
P H Y S I C A L R E V I E W B V O L U M E 2 9 , N U M B E R 2 |KX9 7 4 2 I S J A N U A R Y 1984 

Extended x-ray-absorption fine-structure and x-ray-absorption near-edge-structure studies 
of glassy Ni66B33: A multishell modeling of the Ni-Ni distribution 

Joe W o n g and H o w a r d H . Li^>ennann* 
General Electric Company, Corporate Research and Development Center, P.O. Box 8, Schenectady, New York 12301 

(Received 1 August 1983) 

Amorphous Ni««B33 is a novel metallic glass in that the metalloid content is much higher than 
those of conventional transition-metal—metalloid systems. More interestingly, this amorphous ma­
terial crystallizes homogeneously into a single N i j B phase o f known crystal structure (that of Al iCu) 
in which there is only one nonequivalent N i site. The existence of the Ni^Bss composition as a sin­
gle phase in both the crystalline and glassy states makes i t a useful model system for quantitative 
extended x-ray-absorption fme-structure (EXAFS) investigation o f the local atomic environment in 
metal-metalloid glasses. The local structure of a N i atom in crystalline N i j B consists of four boron 
atoms at a distance of 2.14 A , one N i atom at 2.37. A , two N i atoms at 2.42 A , and two sets of 
four N i atoms at 2.63 and 2.70 A . The Ni2B crystal was used to model the local structure of N i in 
the metaUic glass as follows: Crystallographic data (coordination numbers and bond distances) were 
used as fixed inputs to the Fourier-filtered EXAFS of the crystal to generate an envelope function 
for B and a set of self-consistent phase shifts for the N i - B and N i - N i pairs. Thtse scattering param­
eters were then transferred as fixed inputs to the Fourier-filtered EXAFS o f th 'glass phase to ex­
tract structural parameters. The fitting of the glass EXAFS was performed systematically using 
sequentially 1 B -t- 1 N i shells, 1 B + 2 N i sheUs, 2 B -(- 1 N i sheUs, 1 B - I - 3 N i shells, 2 B -1- 2 N i 
shells, and 1 B -1- 4 N i shells. I t was found that the 1 B -(- 3 N i sheU combination yields the best fit 
and physically most meaningful results for the glass. I t was also'found that the nearest boron shell 
about a N i atom in the glass remains very similar to that of the crystal, but there is considerable 
rearrangement of the outer N i shells. I n the glass, the eleven N i atoms are now distributed into 
three subshells with the shortest N i - N i distance measurably closer to the central N i atom. This lo­
cal rearrangement and closer packing of the N i shells were reflected in the local electronic structure 
of the glassy phase and manifested in changes of the x-ray-absorption near-edge structure spectrum 
in going from the crystal to the glassy phase. Ge substitution was made to probe the metalloid envi­
ronment in glassy Ni«,Bi3Geij. The present EXAFS findings are discussed in light of some recent 
diffraction and N M R results in N i - B glasses. 

I . I N T R O D U C T I O N 

Glassy metalUc alloys fo rmed by splat quenching the 
corresponding Uquids at rates ~ 1 0 * K / s (Ref. 1) const i ­
tu te a novel class o f amorphous solids. These materials 
can exhib i t h igh electrical conduc t iv i ty , ferromagnet ism, 
and superconduct ivi ty , w h i c h are not found i n conven­
t i ona l inorganic and organic po lymer ic glasses. O the r i n ­
teresting properties include h i g h d u c t i l i t y i n bending, cor­
ros ion resistance, and good soft magnetic properties. 
These properties,^ not found i n the crystal l ine counter­
parts, have aroused considerable technologica l ' as w e l l as 
scientific* interest i n recent years. I t has not been estab-
Ushed that certain groups o f related alloys exist for w h i c h 
this glassy phase is relatively stable. Glass-forming meta l ­
l i c alloys may broadly be classified i n to t w o types: (I) 
t rans i t ion metal plus meta l lo id and ( I I ) metal plus another 
meta l . T y p e - I metal l ic glasses are exempUfied by the 
w e l l - k n o w n AugoSiM, PdgoSijo, and NigoP2o glasses are 
more recently the (Fe,Ni)8o(P,B)2o ferromagnetic glasses 
f i i ? t produced at A l l i e d Corpora t ion . T y p c - I I meta l l ic 
glasses may be generically represented by T'-T", R-T", 
and M'-M", where T' is an early t rans i t ion meta l such as 
T i , Z r , N b ; T" is a late t rans i t ion meta l such as 
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Fe ,Co ,Ni ,Cu; /? is a rare-earth meta l such as G d , T b , D y ; 
and M'-M" are simple metal biiuiries such as BcvoAlso 
(Ref. 5) and MgToZnjo ( R e f 6). 

T h e fo rma t ion o f t rans i t ion metal -metal lo id 
( ^ i o o - * ^ x ) glassy alloys by rap id quenching f r o m the 
me l t is usually confined to a l i m i t e d composi t ion range o f 
about 1 5 < x < 2 5 . Glass fo rma t ion i n th i s composi t ion 
range is now k n o w n to be faci l i ta ted by the presence o f a 
deep e u t e c t i c ' I n contrast w i t h t ype - I alloys, the glass-
f o r m i n g composi t ion range o f T'-T" alloys occurs in the 
m i d d l e o f the binary and is usually wider than for t ype - I 
al loys. I n the case o f splat-quenched Nbioo-xNi ;^ , x 
ranges f r o m 40 to 70 ( R e f 8) and can be expanded to 
30—85 at .% N i by vapor quenching. ' M o r e detailed l is t ­
ings o f bo th types o f glass-forming metal l ic systems have 
been given by Takayama '" and D o n a l d and Dav ies . " The 
s t ructure o f such T-M glasses has been postulated by 
Po lk ' ^ t o be comprised o f a dense r andom packing o f hard 
spheres ( D R P H S ) , s imula t ing the meta l atoms, w h i c h 
f o r m a bu lk ma t r i x bu i l t up f r o m an ensemble o f various 
B e m a l po lyhedra . " The meta l lo id atoms are said to be 
s i tuated at the larger holes o f e ightfold- or ninefold-
coord ina t ion i n the metal a tom polyhedra l network. 
Fur the rmore , Polk has estimated that a l l the holes avai l -
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able w o u l d be f i l l ed w i t h meta l lo id atoms at the a tomic 
ra t io [ r ] : [ . M ] o f 80:20. A s is w e l l documented i n the 
l i terature, the glass-forming composi t ion range for a w ide 
variety o f T-M alloys lies i n the v i c i n i t y 1 5 ^ x < 2 5 , near 
the ant icipated 20-at.% meta l lo id c o n t e n t . T h i s s i m ­
ple model fur ther postulates that there are no meta l lo id-
meta l lo id nearest neighbors and tha t the metal-metal loid 
distance w i l l be smaller than the s imi o f the a tomic rad i i 
o f the consti tuent atoms. Ear ly d i f f r ac t ion '* and extended 
x-ray-absorption f ine-s t ruc ture" ( E X A F S ) results ob­
tained for T g o ^ j o - t y p e glasses generally substantiated the 
Polk model , bu t there are quant i ta t ive d i f f e r e nces . " "^ 

Glassy alloys o f the type T-M substantially away f r o m 
the 80:20 a tomic ra t io have been prepared. Inoue et al}^ 
have reported on metal l ic glasses i n the N i - B and C o - B . 
systems conta in ing 33—43 and 35—41 at.% B , respective­
ly . These h igh-meta l lo id systems pose the fo l l owi ng i n ­
teresting questions relevant to the appl icabi l i ty o f the Polk 
model : (i) Where do the addi t ional meta l lo id atoms reside 
i n the D R P H S structure at concentrat ion x > 2 5 (at.%)7 
(ii) D o they go in to other Bemal holes o f lower coordina­
t i o n numbers? ( i i i ) D o they m o d i f y the basic dense ran­
d o m packing o f the metal matr ix? or (iv) do they go i n to 
the structure as nearest neighbor, v io la t ing the metal lo id-
meta l lo id avoidance postulated for the 80:20 system? 
Fur thermore , i t is ins t ruct ive to compare and contrast the 
local s t ructure between these h igh-meta l lo id content 
glasses and that o f the metal-metal glasses such as those i n 
the Z r i o o - x N i , system,^ w h i c h also has a wide composi­
t ion range o f glass fo rmat ion i n the middle o f the binary 
for X = 3 0 - 7 0 . 

A n experimental advantage o f h igh boron-content 
metal l ic glasses l ike those i n the N i - B system is that the 
glass at the composi t ion Ni66B33 crystallizes homogenous-
ly upon aimealing in to a single N i 2 B phase^' o f k n o w n 
crystal s t ructure—that o f A I 2 C U (C16) -type structure. '* 
The existence o f the ^ 4 ^ 3 3 composi t ion i n both the crys­
tal l ine and glassy phases makes i t an attractive experimen­
ta l system for quant i ta t ive E X A F S investigation o f the lo­
cal a tomic environment i n metal-metal loid glasses. T h i s 
is because the crystal can be used as reference mater ia l t o 
generate self-consistent phase shif t and /o r backscattering 
ampl i tude funct ions w h i c h i n t u r n can be transferred for 
evaluat ing bond distances and coordinat ion numbers i n 
the glassy phase. Such an advantage, however, does not 
occur i n the T'go^20 glasses, since their crystal l izat ion 
yields a m i x t u r e o f pure T, T^M, and other T-M 
phases.^'"^' Ano the r advantage, f r o m an E X A F S poin t 
o f view, is tha t i t is possible t o substitute Ge for B i n these 
h igh boron-content glasses to concentrations i n such a 
way that Ge can become the major i ty meta l lo id com­
ponent^' (e.g., Nis^GeigBij ) . T h e meta l lo id environment 
can now be probed by measuring and analyzing the 
E X A F S above the Ge K edge at 11.1 keV. This energy is 
readily accessible at Stanford Synchrotron Radiat ion Lab­
ora tory (SSRL). 

A number o f d i f f rac t ion studies on N i - B glasses have 
been reported i n the l i terature covering compositions at 
N i g . B , , (Refs. 19 and 29), N i ^ B j , (Ref. 30), and 
N i 6 6 B 3 4 . ' ' ' " ' T h e neutron d i f f rac t ion investigation using 
the isotopic subst i tut ion method on both * ' N i - and ' ' B -

enriched N i , i B „ glasses by Lampar te r et al.^ to deter­
mine the N i - N i , N i - B , and B - B par t ia l s t ruc tura l factors is 
by far the most detailed and elucidative. M o s t recently 
Panissod et a / . " have reported a comparat ive study the B 
environments i n glassy alloys and n ickel boride c o m ­
pounds i n the N i ioo . ^^B , system (x =18.5—40) using " B 
N M R . I n the present paper we report on detailed local 
s t ructural investigation i n glassy Ni«cB33 using crystal l ine 
Ni2B to model the N i environment i n the glass i n ou r 
E X A F S analysis. Ge substituted i n t o the binary glass is 
used t o probe the meta l lo id environment . The x-ray-
absorption near-edge structure, the so-called X A N E S , at 
bo th the N i and Ge K edges was used t o probe the meta l -
meta l lo id interactions. F ina l ly , ou r x-ray absorption re­
sults w i l l be compared w i t h the available d i f f rac t ion and 
N M R results. 

I I . E X P E R I M E N T A L 

Master alloys o f composit ions Ni66B33, and 
Ni66B33_^Ge, (>i = 6 , 1 2 , 1 8 ) were premel ted using h i g h -
p u r i t y N i (99.98%), B (99.99%), and Ge (99.9999%). De­
tails o f thei r preparat ion and characterizat ion have been 
given ear l ie r . " Rap id ly quenched glassy ribbons o f the a l ­
loys were fabricated by c h i l l b lock me l t - sp i iming i n air . '^ 
Samples thus fo rmed had a cross section o f ~ 10 /im 
t h i c k by ~ l m m wide. T h i s thickness corresponds t o 
about 2 absorption lengths o f N i i n these alloys above i ts 
K absorption edge at 8332.8 e V , ' ' and was achieved by 
careful cont ro l o f the mel t -spinning apparatus conf igt i ra-
t ion and process conditions. '^- '* W i t h th i s thickness, the 
as-cast ribbons can be used direct ly fo r transmission E X ­
A F S measurements w i t h o u t any mechanical t h inn ing after 
checking for the amorphous nattire by the bend d u c t i l i t y 
testing and x-ray d i f f rac t ion . E X A F S specimens were 
then prepared by carefully lay ing four pieces o f 5-cm-long 
ribbon strips side by side on an a l u m i n u m sample holder 
so tha t the synchrot ron x-ray beam to ta l ly permeated the 
specimen. The sample holder was m o i m t e d onto the c o l d 
finger o f a double-wal l cryostat cooled w i t h l i q u i d n i t r o ­
gen. 

I n i t i a l l y three specimens o f crystal l ine Ni2B were ob­
tained: (a) master Nie^Bss al loy f r o m our o w n in-house 
me l t i ng i n powder f o r m ; (b) ribbon samples crystal l ized by 
annealing the Ni^sBsj glassy ribbons at 550 °C for 2 h i n 
pur i f i ed Ai[Tg of glassy N i ^ ^ B j j = 3 7 9 ' C ( R e f 23)] , and 
(c) commercia l " N i 2 B " powder f r o m Cerac, Inc . X - r a y 
d i f f rac t ion analysis showed that bo th (a) and (b) consist o f 
a pure N i z B phase" whi le (c) consisted o f N i2B as a major 
phase w i t h N i3B as a m i n o r phase. O n l y specimen (b) was 
used for E X A F S measurements since i t was d i rec t ly crys­
ta l l ized f r o m the glassy phase o f the same mater ia l and 
was i n the ribbon f o r m . Specimen (a) could have been 
used, but at a risk o f having p in-hole and thickness 
n o n u n i f o r m i t y i n the spectral specimen, bo th o f w h i c h 
causes errors i n the t ransmit ted intensi ty , and hence inac­
curacy i n ampl i tude functions. 

Transmission X A N E S and E X A F S measurements were 
made at r oom temperature w i t h the E X A F S 1-5 spectrom­
eter at SSRL du r ing a parasitic r u n o f S P E A R (Stanford 
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Posi t ron Elec t ron Accelerator Ring) at an electron energy 
o f 2.4 G e V and storage r ing injection current ~ 1 5 m A . 
T h e synchrot ron x-ray beam f r o m S P E A R was mono-
chromat ized w i t h a chaimel-cut Si(220) crystal w h i c h 
yielded an energy resolution o f —0.7 eV for the N i K edge 
at 8332.8 eV and ~ 1 eV for the Ge K edge at 11 103.1 
e V . " A Ni -me ta l f o i l and Ge powder ( - 4 0 0 mesh, then 
fur ther je t -mi l led) film dispersed i n D u c o ® cement were 
used to calibrate the spectrometer. The Berkeley 
s o f t w a r e " was used to collect the X A N E S and E X A F S 
data. Since the measured disorder al^^ is a sum con t r ibu­
t i o n o f t he rma l aly, and structural cr,, disorder, E X A F S 

scans o f l iquid-ni trogen-cooled samples ( ~ 9 0 K ) were 
also recorded i n order t o m i n i m i z e thermal broadening 
and to b r i n g out the s t ructura l effects i n w h i c h we are i n ­
terested. 

I I I . RESULTS A N D D A T A R E D U C T I O N 

The N i K edge E X A F S spectra at - 9 0 K for glassy 
Ni6«B33 and N i ^ B crystal l ized f r o m the glass are shown i n 
part (a) o f Figs. 1 and 2, respectively. Since the K edge o f 
boron (188 eV) is too low i n energy to be measured w i t h 
the x-ray radia t ion emerges f r o m the Be w i n d o w (wh ich 

R(A) 
F I G . 1. (a) Experimental scan of N i #:-edge X A N E S and EXAFS in Nis^Bja glass at - 9 0 K , the energy scale is wi th respect to the 

N i K-ed%c energy (8332.8 eV) taken as zero, (b) Normalized EXAFS as Xk vs fc. (c) Fourier transform of (b). (d) Inverse transform 
of (c) in the region 1-2.8 A . The *</{) scale inXc) has been muhiplied by 10. 
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F I G . 2. (a) Experimental scan of N i Jf-edge X A N E S and EXAFS in crystalline N i j B a t - ^90 K.(bJ_Normalized EXAFS. (c) 
Fourier transform of (b). (d) Inverse transform of (c) in the region 1-2 A . (e) Inverse transform of (c) in the region 2 - 3 A . (f) In­
verse transform of (c) in the region 1-3 A . The <I>(R) scale in (c) has been multiplied by 10. 
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R(A) k (A-
F I G . 3. (a) Experimental scan of Ge K edge X A N E S and EXAFS in Ni j iB i sGEu glass at - 9 0 K , the energy scale is wi th respect 

to the Ge ^-edge energy j U 103 eV) taken as zero, (b) Normalized EXAFS. (c) Fourier transform of (b). (d) Inverse transform of 
(c) in the region 0.5—2.8 A . The <t>(R) scale in (c) has been multiplied by 10. 

absorbed most o f the radiat ion below 2.5 keV) o f the 
E X A F S 1-5 spectrometer, Ge substi tut ion was made and 
used as a probe for the metal loid environment i n the N i - B 
glass. Ge was progressively added i n glassy Ni64B33_^Gej, 

= 6,12,18) u n t i l i t became the major meta l lo id const i tu­
ent. T h e low-temperature Ge K edge spectrum for 
Nis^BisGeig is shown i n F ig . 3(a). Th i s E X A F S spectrum 
after normaUzation (see below) was shown to be identical 
to those w i t h y =6 and 12. Room-temperature E X A F S 
spectra o f the same samples were also recorded, and ex­
h ib i t ed i n each case identical j i u n p at the absorption edge 

as expected since this is a direct measure o f sample th ick­
ness. However, the magnitude o f the E X A F S oscillations 
above —30 eV decreases, w h i c h indicates thermal 
broadening. 

Da ta reduction fol lowed a standard procedure' '"**' o f 
correcting for spectrometer shif t , degl i tch ing , pre-edge 
and post-edge background removal , edge normal iza t ion , 
extract ion o f the E X A F S signal Xik), Four ier t ransform 
o f Xik), and inverse t ransform to isolate the E X A F S con­
t r i b u t i o n f r o m a selected region i n real space. The pre-
edge background in the range —200 to —20 eV is ob-
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tained by a linear regression analysis o f the first ten raw where EQ is the energy threshold o f the absorption edge. ' ' 
data points . The post-edge background above 30 eV i n the T h e normal ized E X A F S Xik) at energies above - 3 0 eV 
E X A F S region was generated analyt ical ly using a series o f was obtained by subtract ing the smooth post-edge back-
cubic splines*' o f equal segments. The ends o f each seg- g round noik) f r o m the measured absorpt ion fiik) and d i -
ment are so connected that the derivatives are continuous v i d i n g by the step j u m p S at the absorption edge w i t h the 
across the ends. F ive such splines were found adequate. M c M a s t e r correction*^ Mik) as a func t ion o f energy: 
W h e n the mmiber o f segments is too smal l the back­
g round is not separated we l l enough; when the number is fiik)—tioik) 
too large the background fol lows the E X A F S oscillations, Xik)= ^ ^ ^ j ^ j ( 1 ) 
especially at l ow energy, and " robs" its i n t e n s i t y . " The 
energy scale was then converted to the k scale using -n. T~ • . r r n • i j j - i . . 

The Fourier t ransform o f Xik) yields a radial s tructure 
k = ( l / ^ ) [ 2 m ( £ - £ o ) ] ' ^ = [ 0 . 2 6 3 ( £ - - £ o ) ] ' ^ funct ion <PiR) i n real space: 

• o 

n-200 0 200 400 aoo aoo looo laoo 

Energy (eV) k, (A- i ) 

k (A--") 
F I G . 4. (a) Experimental scan of N i AT-edge X A N E S and EXAFS in pure N i metal at - 9 0 K . (b) Normalized E X A F S . (c) 

Fourier transform of (b). (d) Inverse transform of the first shell in (c) in the region 1—2.8 A . The ^R) scale in (c) has been mul t i ­
plied by 10. 
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4>(R) = {2irr^^f'''"'W{k)k"X{k)e7ip(2ikR)dk , (2) 

where Wik)isaL Mann ing funct ion defined as 

1 — cos27r 

and was applied to the first and last 1 % o f the usable 
E X A F S data defined by k^i„ and and n = 1, 2, or 3 

to weigh the data i n k space. ' ' 
I n F i g . 1(b) the normal ized N i E X A F S fo r glassy 

Ni66B33 Js p lot ted as Xk vs k. T h e Four ie r t r ans fo rm o f 
this signal [ F i g . 1(c)] yields a broad radia l peak at ~ 2 A , 
w h i c h is asymmetr ic on the l o w - U side. Inverse t rans form 
o f this radial s tructure peak i n the region 1—2.8 A yields 
a f i l tered X'^k signal i n k space [ F i g . 1(d)], w h i c h was used 
to simulate the local structure o f N i i n the glass (see 
below). 

I n F i g . 2(b) the normal ized N i E X A F S fo r crysta l l ine 
N i z B is p lot ted also as Xk vs k. The Four ier t r ans fo rm o f 

Energy (eV) 

R(A) k(A--') 
F I G . 5. (a) Experimental scan of Ge AT-edge X A N E S and EXAFS in pure Ge at room temperature, (b) Normalized E X A F S . (c) 

Fourier transform o f (b). (d) Inverse transform of the first shell in (c) in the region 1-3 A . The <Jf(.R) scale in (cl has been multiplied 
by 10. 
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th is signal [ F i g . 2(c)] yielded a number o f dist inct radial 
peaks to at least 6 k f r o m the N i center. The spikes 
below 1 A are art ifacts o f the t ransform and have no 
s t ructura l significance. The t w o peaks i n the range 1—3 A 
are o f direct relevance i n model ing the short-range order 
environment o f N i i n the corresponding glass. A n inverse 
t ransform o f the first s t ruc tura l peak i n the range 1—2 A 
yields a filtered X^k signal [ F i g . 2(d)] wh ich has a mono-
tonic decreasing envelope typ ica l o f a l o w - Z element Uke 
boron.*' I n the region 2—3 A an inverse transform o f the 
second structure peak i n F ig . 2(c) yields a filtered X''k sig­
nal [F ig . 2(e)] w h i c h has a m a x i m u m i n the envelope t y p i ­
cal o f a 3d element hke nickel . F ina l ly , an inverse 
t ransform o f the combined t w o peaks i n the region 1—3 A 
yields a filtered X'^k signal [ F i g . 2(f)] w h i c h is a superim-
posi t ion o f those i n F i g . 2(d) and 2(e), and consists o f an-
i n i t i a l decreasing signal at low k and a m a x i m u m i n the 
region o f i fc~9.5 A ~ ' . 

I n F i g . 3(b) the normal ized Ge E X A F S for glassy 
NiefiBijGejg is plot ted as Xk vs k. Fourier transforms o f 
this signal [ F i g . 3(c)] y ie ld a single, symmetr ic peak i n the 
radial s tructure func t ion . Th i s indicates that the nearest-
neighbor environment o f Ge is qui te wel l ordered i n the 
glass. The inve i | e t ransform [ F i g . 3(d)] o f this peak i n the 
region 0.5—2.8 A yields a filtered X''k signal that is nearly 
identical (except for the high-frequency noise) to the to ta l 
experimental signal, i m p l y i n g tha t the observed E X A F S 
intensity comes entirely f r o m w i t h i n ~ 3 A o f the absorb­
ing Ge a tom i n the glass. Glasses containing 6 and 12 
a t .% Ge gave identical Ge E X A F S when normalized. 

F ina l ly , the K edge E X A F S spectra o f pure N i and Ge, 
their normal ized E X A F S , Four ier t ransforms, and inverse 
transforms o f the f i r s t s tn ic tu ra l peak i n the regions 
1—2.8 A and 1—3 A are shown i n Figs. 4(a)—4(d) and 
Figs. 5(a)—5(d), respectively. The N i spectrum was taken 
at ~ 9 0 K and the Ge spectrum was obtained at room 
temperature. A s discussed in the next section, the first 
shell inverse t ransform o f these t w o materials was used to 
extract a set o f self-consistent phase shifts and envelope 
functions for the N i - N i and Ge-Ge a tom pairs w h i c h are 
used as i npu t scattering parameters i n s imulat ing the 
structure o f Nis«B33 and N i s ^ B u G e u glasses by curve fit­
t i ng to the experimental data. A l s o , the near-edge absorp­
t i o n spectra i n the range ± 6 0 c V o f both N i and Ge were 
used to evaluate the local electronic interact ion (chemical 
bonding) o f the metal and meta l lo id atoms i n the glasses. 

I V . DISCUSSION 

A . Structure o f cryi tal l ine N i i B 

N i j B belongs to the A l j C u (C16) -type structure^*: 
body-centered tetragonal, space group D J J iM/mcm), and 
Z = 4 N i 2 B uni ts per cel l . The eight N i atoms are i n C2„ 
sites and four B atoms are i n sites. Each B atom is 
coordinated w i t h eight N i atoms situated at the comers o f 
an A r c h i m e d i a n square an t ip r i sm [see F ig . 6(a)] and has 
t w o noncontract ing 6 atoms as a distance o f 
' • B - B = C / 2 = 2 . 12 A , w h i c h is larger than twice the radius 
o f the B a tom o f 1.86 A [see F ig . 6(b); c is the c parame­
ter o f the tetragonal un i t ce l l ] . The local o f e a c h N i a tom 

(b) 

F I G . 6. (a) (110) and (b) (001) projections o f the idealized 
C16-type structure for N i j B showing the packing and local 
coordination geometry of N i and B. The N i atoms lying the 
(110) hexagonaljietwork are shaded to distinguish them from N i 
atoms in the (110) hexagon network. The dotted circles denote 
B atoms. In (a) the solid and dotted squares define the top and 
bottom faces of an Archimedean square antiprism o f N i atoms 
around a given B atom. (After Havinga et al., Ref. 24.) 

consists o f a shell o f four nearest B neighbors at 2.14 A , 
w h i c h give rise to the first radia l peak i n the region 1—2 
A o f the Four ier t ransform i n F i g . 2(c). The N i a tom is 
also surrounded by 1 -(- 2 -(- 4 -H 4 = 11 N i atoms at 2.37 A 
idO, 2.43 A (rfj), 2.70 A ( d j ) , and 2.63 A ( ^ 4 ) [see F i g . 
6(a)]. Th i s set o f N i neighbors combine to give the second 
radial peak in the region 2—3 A o f the Four ier t ransform 
[ F i g . 2(c)]. O f significance i n this s t ructure is the short 
N i - N i distances, di and d2, w h i c h are shorter than the 
N i - N i distance i n fee N i metal . A c c o r d i n g to the descrip­
t ion o f Hagg,** the N i atoms f o r m t w o sets o f mut t i a l 
orthogonal planes w i t h a dense packing o f hexagon paral­
lel to (110) and ( l lO) , respectively. T h e hexagons o f the 
different sets are fu l ly in te r lock ing as depicted i n F ig . 6(b). 
The B atoms are situated as l inear chains i n the channels 
parallel to the c axis, w h i c h are fo rmed by this in ter lock­
ing honeycomb structure. 
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B . ExpcrimenUlly determined N i - B , N i - N i , and Ge-Ge 
phase shifts and B, N i Ge amplitude functions 

I n the single-scattering a p p r o x i m a t i o n , ' ' ' * the observed 
E X A F S Xik) may be described by 

Xik)=—^ "^Ajsmllrjk +4,jik)] , (4) 

hav ing oscil latory terms w i t h frequencies I2rjk +<^jik)], 
and ampl i tude terms Aj given by 

Aj = —fji'!T,k)e:ip 
- 2 r , 

exp( -2cr; /c (5) 

The parameters on the right-hand side o f Eqs. (4) and (5) 
may be classified as (a) scattering parameters, w h i c h i n ­
clude phase shift (pjik), backscattering ampl i tude fjiir,k), 
and mean free path X, and (b) s t ructural parameters, 
w h i c h include coordinat ion number Nj, bond distance r^, 
and Debye-Waller factor Cj. The summat ion is over aJl 
coordinat ion shells j par t ic ipa t ing i n the E X A F S event. 
I n a model system such as N i j B for w h i c h Nj and are 
known , E X A F S may be used to generate a set o f self-
consistent scattering parameters; this i n f o r m a t i o n can 

then be applied t o an u n k n o w n system o f s imi la r chemical 
nature, w h i c h i n this case is the glass o f the same compo­
si t ion , to determine s t ructural parameters. 

A least-squares procedure*' is set up t o m i n i m i z e the 
variance S, where 

S=J,iXf-Xi)^ . (6) 

Here xf are the Fourier-f i l tered experimental data and Xi 
is the analyt ical expression given i n E q . (4) w h i c h de­
scribes Xj for n data points . Since Xik) is no t a linear 
funct ion o f the various parameters, a Taylor-series expan­
sion is used w h i c h expresses Xik) i n terms o f approximate 
parameter values Pj and parameter adjustments 
M'j=Pj—Pj. W h e n the least-squares cond i t i on is ap-
phed, a set o f simultaneous equations is obtained i n terms 
o f APy rather than Pj. The equations are solved for the 
adjustment and the parameters were adjusted by \Pj 
to give a new set o f estimates. T h e procedure was then 
reiterated w i t h a new estimate Pj and so on u n t i l the new 
solution d i f fe r rcd f r o m the last by less than a desired 
value, w h i c h is usually 1 % . 

12 .3 1 4 . 0 

k(A-^) 
F I G . 7. Experimental (line) and simulated (points) EXAFS from the four B atoms in the region 1—2 A about the central absorbing 

N i atom in crystalhne N i i B at —90 K . 
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1. Determination of Ni-B phase shift and B envelope function 

F r o m the N i E X A F S data, i t is evident that the f i rs t ra­
dia l peak i n the region 1—2 A o f the Fourier t ransform 
for Ni2B, shown i n F ig . 2(c), corresponds to the shell o f 
four B atoms about the absorbing N i a tom i n the N i 2 B 
crystal structure. The inverse t ransform [ F i g . 2(d)] o f th is 
peak indeed shows an experimental envelope characteristic 
o f a l o w - Z backscattering a tom, i.e., B . T o obtain self-
consistent phase shif t for the N i - B pair, the parametrized 
values o f Lee et al.*^ i n the f o r m 

(7) 

were used as i n i t i a l input . The envelope func t ion 
/a(i7-,fe)exp( —lYj/X) for B was obtained empi r ica l ly f r o m 
the filtered E X A F S itself [ F i g . 2(d)] and was fixed i n the 
s imula t ion . A £ o [ = £ o ( t h e o r e t i c a l ) - £ < , (experimental) 
( R e f 43)] and a were fixed at zero. N =A and r = 2 . 1 4 A 
were used as fixed structural parameters. The s imula t ion 
was done i n X space to emphasize the backscattering con­
t r i bu t i on o f B at l ow k. The results are shown i n F i g . 7, 
where the curve denotes the Fourier-f i l tered spectrum and 
the points denote the simulated spectrum. The phase pa­

rameters and the inpu t values o f N and r are given i n 
Table I . The s imula t ion was fitted w i t h a standard devia­
t i o n o f 2 .8% o f the m a x i m u m ampl i tude o f the experi­
mental X^ funct ion . 

2. Determination of Ni-Ni phase shifts 
and Ni envelope function 

T o generate the phase and envelope func t ion fo r the 
N i - N i pair, we first performed a se l f - f i t t ing o f the filtered 
E X A F S [ F i g . 4(d)] o f the first shell o f 12 nearest neigh­
bors i n fee N i metal w i t h the f o l l o w i n g fixed inputs: 
N= 12, r = 2 . 4 9 2 A , A £ o = 0 . and a^=0. The f i t t i n g was 
performed i n Xk^ space to weigh the c o n t r i b u t i o n o f N i at 
h i g h k. The results are shown i n F i g . 8, where the curve 
denotes the f i l tered experimental E X A F S and the points 
denote the s imulated spectrum. T h i s s imula t ion has a 
standard deviat ion o f 5% o f the m a x i m u m ampl i tude o f 
the experimental x''k^ spectrum. T h e N i - N i phase pa­
rameters so obtained (Table I ) were then used as i n i t i a l i n ­
puts t o simulate the filtered t r ans fo rm [ F i g . 2(e)] arising 
f r o m the four N i subshells i n the region 2—3 A [ F i g . 2(c)] 
about the central absorbing N i a tom i n crystalhne N i j B . 

k(A-^) 
FIG. 8. Experimental (line) and simulated (points) EXAFS of tlie first shell of 12 neighbors in the region 1—2.8 A about a Ni 

atom in N i metal at - 9 0 K . 
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T A B L E I Experimental phase-shift parameters for Ni-B, N i - N i , and Ge-Ge pairs [phase shitl <Pik) = Po + P,k+P2k' + Py/k^]. 

Atom pair 
P-Q Model system (A) ^0 P J Pi Remarks 

(1) Ni -B Ni jB crystal, 1-2 A 2.14 0.8700 -1.6838 0.0624 8.16 Use values o f 
Lee et al. (Ref. 46) as inputs 

(2) N i - N i N i metal, 1-2.8 A 2.492 1.1415 -1.1960 0.0284 -121.98 Same 
<3) N i - N i N i jB crystal, 2 - 3 A 2.37 6.1434 -1.1934 0.0386 -348.92 Use outputs of (2) 

as inputs 
2.42 1.9470 -1.1714 0.0229 -439.76 
2.70 0.9224 -1.1868 0.0299 -71,31 

N i j B crystal, 1-3 A 
2.63 0.9687 -1.2112 0.0227 -281.73 

(4) Ni -B N i j B crystal, 1-3 A 2.14 1.0441 -1.6979 0.0617 -4 .72 Used outputs of (11 
and (3) as inputs 

N i - N i 2.37 6.2060 -1.1910 0.039 -417.99 
2.42 1.9980 -1.1660 0.0240 -504.57 
2.70 0.9158 -1.1839 0.0300 -814.05 

Crysul Ge, 1-3 A 
2.63 0.9564 -1.1897 0.0266 -333.96 

(5) Ge-Ge Crysul Ge, 1-3 A 2.45 3.5012 -1.1958 0.0275 -122.67 Use values of Lee 
er al. (Ref. 46) as inputs 

F I G . 9. Experimental (line) and simulated (points) EXAFS of the four N i suhshells in the region 2 - 3 A about the central absorb­
ing N i atom in crystalline Ni jB at - 9 0 K . 
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Th i s generated a set o f self-consistent experimental 
phase-shift parameters for the four N i subshells i n Ni2B 
crystal . I n this s imula t ion , the same experimental N i en­
velope funct ion f r o m the first shell o f pure N i , the N i - N i 
coordinat ion numbers ( l ,2 ,4j4) , and their bond distances 
(2.37, 2.42, 2.70, and 2.63 A , respectively) i n crystal l ine 
N i2B , A £ o = 0 . and < 7 ^ = 0 were used as fixed inputs. The 
phase parameters P, for each shell were al lowed to vary. 
The s imula t ion was made in Xk^ space and constituted a 
four-shell fitting. The results shown in F ig . 9 had a stan­
dard deviat ion o f 2 .7% o f the m a x i m u m ampl i tude o f the 
experimental X'^k^. The derived N i - N i phase parameters 
are also given in Table I . 

As can be seen, the phase shift derived empir ica l ly for 
the first N i shell i n pure fee N i metal at 2.492 A was not 
s t r ic t ly transferrable to any o f the N i - N i shells in crystal­
hne N i j B having a spread o f distances f rom 2.37 to 2.70 
A . Such phase shift dependence .on the distance between 
the center and backscattering atoms is a consequence o f 
the breakdown o f the small-atom approximat ion , first 
pointed out by Lee and Pendry'*' and latter emphasized by 
Pettifer."* The si tuat ion was studied in more detail by 
Bunker and Stem" ' i n their phase analysis o f a we l l -
chosen series o f tetrahedrally coordinated crystals Ge, 

G a A s , ZnSe, and C u B r . 

3. Combined determination of Ni-B and Ni-Ni phase shifts 

H a v i n g obtained the phase shif t parameters separately 
for the N i - B shell i n Sec. I V B 1 and those for the four 
N i - N i shells i n Sec. I V B 2, these phase-shift parameters 
were fur ther fine-tuned i n a combined five-shell f i t on the 
filtered t ransform given i n F i g . 2(f). This combined the 
E X A F S contr ibut ions o f 4 B and 11 N i neighbors about a 
central N i atoms i n the region 1—3 A o f the Fourier 
t ransform [ F i g . 2(c)] fo r crystal l ine N i ^ B . The phase-shift 
parameters obtained f r o m Sees. I V B 1 and I V B 2 were 
used as i n i t i a l inputs for the N i - B and N i - N i shells. 
NJ, KJ, a], and EQ ident ical to those i n Sees. I V B 1 and 
I V B 2 were again used as fixed inputs . The s imula t ion 
was made i n Xk^ space. The results are shown i n F i g . 10 
and had a standard deviat ion o f 4 % o f the m a x i m u m am­
pl i tude o f the experimental X'^k^ spectrum. T h e final 
phase shift parameters for N i - B and N i - N i shells are given 
i n Table I . I t is noted that each set o f final phase shif t pa­
rameters varies l i t t le f r o m the corresponding set obtained 
separately i n Sees. I V B 1 and I V B 2. The combined fit 
and the fine-tuning was necessary since both the N i - B and 

1 7 . 0 

k(A-' ') 
FIG. 10̂  Experimental (line) and simulated (points) EXAFS combining contributions from one B and four N i subshells in the re­

gion 1—3 A about the central absorbing N i atom in crystalline N i i B at ~ 9 0 K 
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k(A-^) 
FIG. 11. Experimental (line) and simulated (points) EXAFS of the first shell of four neighbors in the region 1-3 A about a central 

Ge in pure Ge at room temperature. 

N i - N i shells in the structural ly unknown glassy Nis^Bss 
had to be simulated simultaneously for the filtered 
E X A F S f r o m one broad radial structure peak in the same 
region o f real space 1—3 A [see Figs. 1(c) and 1(d)]. 

4. Determination of Ge-Ge phase shift 
and Ge envelope function 

The phase and envelope funct ion for the Ge-Ge pair 
were generated i n a s imilar manner by a self-f i t t ing o f the 
filtered E X A F S [F ig . 5(d)] ̂ signal f rom the first shell in 
pure Ge i n the region 1—3 A [ F i g . 5(c)]. A ^ = 4 , r = 2 . 4 5 0 
A , A £ o = 0. and a ^ = 0 were used as fixed parameters. 
The fitting was performed i n Xk^ space. The results 
shown i n F i g . 11 have a standard deviation o f 4 .5% o f the 
m a x i m u m ampl i tude o f the experimental X''k^- The Ge-
Ge phase-shift parameters so obtained (Table I) were then 
used as fixed inputs to simulate the meta l lo id environment 
i n Ge-substituted Nij^BisGeig glass (see Sec. I V E). 

C. N i environment in Ni«<jB33 glass 

The phase shifts and envelope functions for the N i - B 
and N i - N i pairs extracted f r o m the filtered experimental 
E X A F S o f crystal l ine N i i B and fee N i metal as described 

above were then transferred and used to determine N, r, 
and for the N i a tom i n glassy Ni66B33. The values 
for the glass were then calculated relative to the crystal 
values for the corresponding backscatterers (taken as zero 
as stated i n Sees. I V B 1 and I V B 2 above). Curve fitting 
was performed systematically using various combinat ions 
o f N i - B and N i - N i subshells: 1 B + 1 N i , 1 B -f- 2 N i , 
1 B 4- 3 N i , 1 B -f- 4 N i , 2 B - I - 1 N i , and 2 B 2 N i . The 
number i n these combinations denote the number o f sub-
shells (distinct interatomic distances). I t was found that 
the 1 B -1- 3 N i combinat ion yielded the best fit w i t h phys­
ical ly meaningful parameters for the glass. The results are 
shown i n F ig . 12 and summarized in Table I I . 

I t is seen that the number and distance o f nearest boron 
atoms about a N i constituent in the glass remain very-
s imi la r to those o f the crystal . Th i s is not surpr is ing since 
the meta l -meta l lo id environment is expected to be largely 
determined by local chemical interactions, w h i c h in this 
case o f nickel-boron, involves signif icant overlap o f the 
boron p orbitals w i t h the d o rb i ta l o f the N i . ' ° Such local 
electronic interactions between chemical ly d iss imi lar pairs 
o f constituent atoms are unHkely to d i f fe r i n going f r o m 
the crystal to the glassy phase o f the same composi t ion. 

However, there is considerable rearrangement o f the 
outer N i shells about the central N i a tom. I n the glass the 
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11 N i atoms are now distr ibuted in to three subshells w i t h 
an ensemble average o f 4, 3, and 4 atoms at 2.24, 2.46, and 
2.63 A , respectively. The shortest N i - N i distance i n the 
glass is measurably shorter than that i n the crystal at 2.37 
A (Table I I ) . Th is local rearrangement and closer pack­
ing o f the N i subshells are indeed reflected i n the overall 
local electronic structure o f the glassy phase and manifest­
ed i n changes o f the near-edge spectral features, the so-

T A B L E I I . Bond distances (r) and N i coordination Cs, in 
glassy and crystalline Ni2B: N i as centra! atom. 

Glass 
r (A )'' 

Crystal' 
r (A ) CNi' r (A )'' CN, r (A ) 

3.8 B 2.11 ±0.03 4 B 2.14 
4.3 N i 2.24±0.09 1 N I 2.37 
3.0 N i 2.46±0.06 2 N i 2.42 

4 N i 2.70 
3.9 N i 2.63±0.12 4 N i 2.63 

3.8 B+U.2 N i 4 B + 11 N i 

• ± 1 0 % or better. 
"Spread in r value caluclated from for the glass in Table I I I . 
'Data from Ref. 24. 

called X A N E S (x-ray absorption near-edge structure) i n 
going f rom the crystal to the glassy state. 

I n F ig . 13(a) the normaUzed N i K-edge X A N E S spectra 
for crystal l ine and glassy N i i B are p lo t t ed on the same 
scale in the range ± 6 0 eV. Each spect rum was no rma l ­
ized by subtracting the Unearly f i t t ed l ine fo r the pre-edge 
f r o m a l l points in the region ± 6 0 eV and d iv id ing the 
difference by the edge j u m p 5 as described i n Eq . (1). The 
number o f spectral features i n the v i c i n i t y o f the edge can 
be seen more clearly i n the derivat ive spectra shown i n 
F ig . 13(b). I n the crystal , four d is t inct peaks are observed 
i n the derivat ive spectrum i n the region 0—20 eV. The 
actual energies o f these spectral features i n the normal ized 
edge spectra [ F i g . 13(a)] are give by the corresponding 
zeros on the high-energy side o f the peaks i n the deriva­
t ive spectrum. Thus , i n the case o f crystal l ine N i2B , the 
four peaks in the derivative spectrum correspond to spec­
t ra l features at 1.5, 5.5, 15, and 19 eV. T h e feature at 1.5 
eV corresponds to the dipole forbidden Is—id t ransi t ion 
and is weak. T h e feature at 5.5 eV may be assigned to the 
U—>4p t rans i t ion w h i c h is dipole a l lowed. Th i s assign­
ment is based p r i m a r i l y on the a tomic energy levels for N ' 
given by M o o r e . " The features at 15 and 19 eV are mos 
l ike ly due to the mult iple-scat ter ing ef fec ts . " I n the glass 
the onset o f edge absorption is negatively shifted by ~ 1 . 3 
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F I G . 13. (a) Normalized N i AT-edge X A N E S and (b) derivative spectra in crystalline and glassy N i j B at ~ 9 0 K . The various tran­
sitions in the range ± 2 0 eV can be seen more clearly in the derivative spectra. Features above 30 eV are EXAFS related. 

eV w i t h the respect to the crystal and the whi te Une at 19 
eV exhibits lower intensity. The negative shif t may be due 
to an increase i n the overlap o f the N i d orbitals as a result 
o f a decrease in the shortest N i - N i distance o f the inner­
most N i subshell i n the glass. However, the posi t ion o f 
the ls~^3d t ransi t ion remains approximately at ~ 1 . 5 eV. 
A t higher energies the X A N E S spectrum is rather feature­
less. The derivat ive spectrum exhibi t a broad peak in the 
same energy region where the crystal shows three wel l -
defined peaks. Th i s broad feature i n the mul t ip le -
scattering regime merely reflects the existence o f a d is t r i ­
bu t ion o f N i environments i n the glass as compared w i t h a 
unique C2„ site for N i atoms i n crystalhne Ni2B. 

W e now consider the N i - N i coordinat ion geometry i n 
the glass. F r o m the E X A F S results, i t is conceivable that 
the 11 N i neighbors, on an ensemble average, are arranged 
i n a slanting t r igonal p r i sm capped at a l l i ts f ive faces. I n 
other words, the three subshells o f N i neighbors about a 
central N i may be located as fol lows: The 3 N i at 2.46 A 
f o r m an equilateral tr iangle conta in ing the central N i . 
The other t w o sets o f 4 N i at 2.24 A and 2.63 A f o r m 
t w o penetrating (distorted) tetrahedra, each w i t h an apex 
N i l y i n g along the C3 axis o f the t r igona l p r i sm. Indeed, a 
scaled stick model o f N i - N i n cluster can be bu i l t w i t h 
bond angles about the central N i such that the three ob­
served N i - N i distances can also be mainta ined between N i 
atoms f r o m any t w o subshells. Th i s is depicted i n F ig . 14. 
Fur thermore , a rearrangement o f the four N i subshells in 
the crystal t o three N i subshells i n the glassy may also be 
correlated w i t h intensity redis t r ibut ion o f the whi t e line i n 
the X A N E S spectra shown i n F ig . 13(a). Th i s can be 
rat ionalized qual i ta t ively since the electomic structure o f 
a collection o f particles (atoms) as wel l as mul t ip l e -

Ca a x i s 

F I G . 14. Model of an average N i coordination sphere about a 
central N i atom in Ni66B33 glass. The 3 N i at the B positions are 
at 2.46 A , the 4 N i at .4 are at 2.24 A and the other four at C are 
at 2.63 A . The overall cluster is a slanting (nonequal top and 
bottom triangles) and/or twisted (noneclipsing of A and C posi­
tions) trigonal prism with all its faces capping and having a C 3 
symmetry. 
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scattering effects are a funct ion o f its atomic configura­
t ion . 

N o w we shall briefly discuss the results o f f i t t i n g w i t h 
other combinat ions o f boron and nickel subshells. W i t h 
1 B -t- 1 N i combinat ion, nonphysical parameters such as 
negadve and r^i-Ni values, small N^^.f,; ( < 2 ) and /o r 
large A^NI-B ( 8 — 1 1 ) resulted. I n part icular , i t is wor th 
no t ing that using an average N i - N i distance w i t h a 
Debye-Waller w i d t h to approximate the local N i - N i corre­
la t ion w h i c h has well-defined subshells w i t h E X A F S dis­
tinguishable distances does not proper ly simulate the ex­
perimental E X A F S spectrum. Th i s fact is borne out i n 
crystall ine Ni2B wh ich we used to model our E X A F S 
analysis for the glass. The four crystal lographic N i - N i 
distances i n the range 2.37—2.70 A exhibit only a single 
radial structure peak in the region 2.3 A in the Fourier 
t ransform o f the E X A F S signal [ F i g . 2(c)]. The present 
study can also serve to i l lustrate the power o f the E X A F S 
technique over conventional d i f f rac t ion i n elucidat ing sub-
shell structure i n amorphous materials l ike metal l ic 
glasses. I n an E X A F S event each distinguishable distance 
( A r ~ 0 . 0 5 A ) gives rise to a frequency, wh ich has to be ac­
count for in order to simulate the experimental spectrum. 
Recently, Sadoc et al." reported E X A F S studies on t w o 
wel l chosen metal-metal glass systems Ni66Y33 and 

Cu^oZr^o and successfully modeled the experimental pair 
d i s t r ibu t ion funct ion about each const i tuent a tom w i t h 
t w o subshells o f l ike- l ike and Uke-unlike pairs. 

The fit was substantially improved w i t h i n a range o f 
meaningful N, r, and parameters w i t h the 1 B -f- 2 N ' 
subshells combinat ion. For the N i - B subsheh, 
N=4.51, r = 2.11 A , and <T^=0.006 a}. Fo r the first 
N i - N i subshell, N=S.\2, r = 2 . 2 5 A , and CT^=0.0073 A ^ 
and for the second N i - N i subshell, N=2.69, r = 2 . 4 5 A , 
and <T^=0.0029 A^ . The standard deviat ion o f fit was 8% 
o f the m a x i m u m value i n Xk' space. Compared w i t h the 
crystal , the to ta l number o f N i - N i neighbors was s t i l l 
short by ~ three atoms. A d d i t i o n o f the t h i r d N i - N i sub-
shell w i t h the 1 B - I - 3 N i combina t ion yielded fur ther i m ­
provement to the fit and accounted for a l l 1 1 N i atoms 
about a central N i a tom i n the glass (Table I I ) . 

The 1 B -(- 4 N i subshells combina t ion was s imulated in 
t w o ways: (a) by adding a fou r th N i - N i subshell to the 
best fit o f the I B + 3 N i combina t ion , and (b) by using 
the Nj and r̂ - values o f crystal l ine N i 2 B as fixed inputs . 
For (a), nonphysical parameters for the f o u r t h N i - N i sub-
shell such as i V = 4 8 , and / •=3 .6 A ( w h i c h was outside the 
range o f the filtered experimental E X A F S ) were obtained, 
ind ica t ing the unhkely possibiUty o f a f o u r t h N i - N i sub-
shell w i t h i n 3 A o f the N i atoms i n the glass. F o r the 

12.3 14 .0 

k ( A - ^ ) 
F I G . 15. Experimental (line) and simulated (points) EXAFS in the region 1—3 A about the central absorbing N i atom in cryst; 

line Ni2B at room temperature. The simulation was done merely by fitting the o^ value for each subshell with the corresponding 
structural parameters and same phase shift parameters derived for the same material at ~ 9 0 K (see Fig. 101. 
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case o f (b), f i x i n g either Nj or rj produced nonphysical 
values for the other t w o structure parameters i n the s imu­
la t ion . W h e n bo th crystal l ine Nj and rj values were used 
as fixed parameters and aj a l lowed to vary, no convergent 
solut ion was possible. The simulated spectrum was to ta l ly 
incompat ible w i t h the experimental spectrum. 7Vi/s clearly 
indicates that the Ni environment in Ni^Bjj glass is not a 
broadened version of thai in the parent Ni2B crystal. S i m i ­
la r ly , nonphysical s t ructural parameters resulted w i t h 
2 B - f 1 N i and 2 B - I - 2 N i combinations. These require 
no fur ther elaboration. 

The above systematic s imula t ion lends credence to the 
existence o f subshell structure about the metal constituent 
i n the Ni^ftBss glass, as wel l as metal-metal glasses investi­
gated by Sadoc et al.'' The not ion that short-range order 
i n metal l ic glass is s imi lar to or a broadened version o f 
some parent crystal requires reexamination and qualif ica­
t i on . I n meta l -meta l lo id glasses, s imi la r i ty i n the local 
s tructure is expected to persist in the metal-metal loid sub-
shell since this is largely determined by the chemical i n ­
teraction between the metal and metal loid atoms. The 
metal-metal d i s t r ibu t ion i n the glass may vary to yield dif­
ferent subshell structure as seen i n the present case o f 
Ni66B33 glass. Thus , s tructural s imi la r i ty between glass 

and crystal based p r i m a r i l y on peak positions i n radial dis­
t r i b u t i o n funct ions f r o m d i f f r ac t i on ' " and E X A F S ' * ex­
periments cannot be f u l l y substantiated. 

D. Temperature effects 

I n s imula t ing the low-temperature E X A F S spectra for 
the glass, the Debye-Waller factor for each subshell was 
evaluated w i t h respect to the corresponding subshells in 
the crystal , the aj o f w h i c h were taken as zero. The aj 
values so obtained were then a measure o f the s t ructural 
disorder o f the glass w i t h respect t o the crystal at l ow 
temperature. These i n t u rn yielded the spread o f rj values 
given i n Table I I for the glass. The thermal disorder for 
bo th the crystal and glass can now be determined by fit­
t i n g the 300 -K filtered-EXAFS spectra w i t h the corre­
sponding Nj and rj values as fixed inputs and varying aj 
only for each subshell. The results are shown i n Figs. 15 
and 16 and summarized in Table I I I . The fittings were 
5% and 6% o f the m a x i m u m value i n Xk' space for the 
crystal and glass, respectively. 

For the glass, since the s t ruc tura l disorder is given by 
a\o K (hy def in i t ion , relative to the crystal) the difference 
"̂ 300 K—''^90 K yields the thermal disorder at 300 K . These 

1 2 . O 

FIG. 16. Experimental (line) and simulated (points) in the region 1—3 A about the central absorbing N i in Ni^^Bj] glass at room 
temperature. The simulation was done merely by fitting the value for each subshell with the corresponding structural parameters 
derived for the glass at - 9 0 K (see Fig. 11). 
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T A B L E I I I . Structural aJ and thermal crfi, disorder for various subshells in glassy N i i t B j j measured relative to those of crystalline 
NizB taken as zero at ~ 9 0 K . N i as central atom (cr̂  in A 

N i j B crystal N I M B J ] glass 
Subshell Subshell "•300 K 

4 B at 2.14 A 0.0021 3.8 B at 2.11 A 0 .00U ' 0.0027 0.0016 
1 N i at 2.37 A 0.0027 4.3 N i at 2.24 A 0.0083 0.0107 0.0024 
2 N i at 2.42 A 0.0016 3.0 N i at 2.46 A 0.0035 0.0053 0.0018 
4 N i at 2.70 A 0.0042 

3.9 N i at 2.63 A 4 N i at 2.63 A 0.0039 3.9 N i at 2.63 A 0.014 0.0204 0.006 

•These values give the spread of bond distance for the glass in Table I I . 

values are comparable to those for the crystals w i t h some 
differences. The thermal disorder for the N i - B and 
shortest N i - N i subshells i n the glass are shght ly less than 
those o f the crystals. Th is suggests stronger b i n d i n g ' ' o f 
these t w o subshells i n the glass i n accordance w i t h a de­
crease i n interatomic distances found i n the glass. I t is i n ­
teresting to note that the N i - B distance i n N i8 iB i9 glass 
was also determined to be 2.11 A i n a recent detailed and 
careful neutron scattering study by Lampar ter e t c / . " 
The outer t w o N i - N i subshells i n the glass exhibi t higher 
thermal disorder compared w i t h s imilar subshells i n the 
crystal . 

E. Metal loid environment in Ni t iBa j glass 

The Four ier- f i l tered Ge E X A F S f r o m Nif tsB^Geig glass 
[ F i g . 3(d)] was used to probe the me ta l lo id environment i n 
this glass. The s imula t ion was done i n i t i a l l y using one N i 
shell. The N i envelope func t ion f r o m N i meta l obtained 
i n Sec. I V B 2 above and the theoretical phase shifts for* ' 
the G e - N i pair were used as fixed inputs . AEq was a l ­
lowed to vary to redefine the k scale. N, r, and were 
then i terat ively evaluated. The fitting was performed i n 
Xk^ space. The results shown i n F i g . 17 have a standard 
deviat ion o f 4 . 5% o f the m a x i m u m magni tude o f the ex-

F I G . 17. Experimental (hne) and simulated (pomts) EXAFS in the region 0.5—2.8 A about the central absorbing Ge atom in glassy 
Ni(;6B,5Ge,8 at - 9 0 K . 
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T A B L E IV. Bond distance (r) and Ge coordination (Co.) in Ni-B-Ge and Ni-Ge glasses within a re­
gion of 3 A . 

System Cot ' • ( A ) (A^) Remark 

Ni6<,B|5Ge,8' 9.2 N i ' 2.37 0.0073 No detectable Ge-Ge 
contact neighbor 

NisjGe,, 4.0 N i 2.31 Oyanagi et al. (Ref. 56) 
3.8 Ge 2.43 

" A £ o = —3.2 eV was fitted in using the theoretical phase shifts for the Ge-Ni pair. 
" ' = ± 1 0 % or better. 

per imental X^k^ spectrum. The best f i t t ed number o f N i 
neighbors, the G e - N i separation, and the associated cr̂  
value are given i n Table I V . 

T o test the existence o f meta l lo id-meta l lo id nearest 
neighbors in this type o f h igh metalloid-content metal l ic 
glass, a subshell o f Ge was added to simulate the same ex­
per imental Fourier-f i l tered Ge E X A F S given i n [ F i g . 
3(d)]. Ge envelope and Ge-Ge phase shifts obtained f r o m 
pure Ge in Sec. I V B 4 were used as f ixed inputs. I t was 
found that add i t ion o f a Ge subshell yielded diverging 
solutions w i t h nonphysical parameters such as negative 
coordinat ion number, negative and /o r large r value for 
the Ge-Ge pair. These simulations indicated that Ge-Ge 
nearest neighbor i n N i ^ B i s G c i g glass is not l i ke ly to 
occur. 

Thus, the Ge E X A F S results indicate that i n the 
Nift^BisGeig glass Ge is n inefold coordinated by N i and 
there is no Ge-Ge contact neighbor. Compared w i t h the 
boron environment i n crystal l ine Ni2B discussed above, 
the coordinat ion o f the meta l lo id consti tuent i n the crystal 
is not preserved i n the glassy state. I n fact , " B N M R 
measurements w h i c h probe d i rec t ly the electric f ie ld gra­
dient, and hence site symmetry o f boron, showed clearly 
that the t r i p l y peaked spectrum characteristic o f boron in 
uniaxia l symmetry in crystall ine N i2B was not observed i n 
the corresponding Ni^B33 glass." Instead, a spectrum 
characteristic o f boron in nonunix ia l symmet ry s imi lar to 
tha t o f N i j B crystal was observed. Agreement o f our Ge 
data w i t h the " B N M R data showed general va l i d i t y o f 
the Ge subst i tu t ion as probe o f me ta l lo id environment . 
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F I G . 18. Normalized Ge K-edge X A N E S spectra in crystalline Ge and Ni^BisGeig glass at ~ 9 0 K . 
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However, caut ion must be taken in deducing details o f the 
boron enviroiunent f r o m that o f Ge since their electronic 
configurat ions and atomic radi i are qui te different. O f i n ­
terest also is the G e - N i distance o f 2.37 A i n the glass, 
w h i c h is m u c h shorter than the sum o f the Go ldschmid t 
rad i i (1.25 A + 1.37 A = 2.62 A ) , indicat ing that there is 
strong chemical interaction between N i and Ge i n the 
glass. T h e interaction can also be seen in the Ge i^-edge 
wh i t e l ine i n the X A N E S spectra for the glass and pure 
Ge shown i n F ig . 18. Th i s whi te l ine corresponds to a 
dipole-al lowed transition f r o m the \s core to 4p final 
states, w h i c h are part ial ly empty in the pure Ge solid, and 
its intensity is governed direct ly by the emptiness o f the 
final p state. I n the Ni j^Bi sGis glass, when there exists 
electronic interaction between the metal and meta l lo id 
such that there is overlap o f the N i 3d w i t h the G e p states 
and vice versa, such overlap increases the occupancy 
(hence reduces the emptiness) o f the Ge 4p states. Th i s i n 
t u rn reduces the probabil i ty o f the h — 4 p t ransi t ion and 
hence lowers its intensity as seen i n F i g . 18. Th i s elec­
tronic interaction is also manifested in the N i AT-edge 
X A N E S spectra shown i n F ig . 19, w h i c h indicates an 
overall decrease i n intensity o f the X A N E S in the glass. 

A s imi la r ly short Ge -Ni distance has been reported by 
Oyanagi et al.^^ on sputtered amorphous N i - G e films us­
ing a laboratory E X A F S apparatus. I n al l composit ions 
investigated ( 7 - 5 5 at .% N i ) , the Ge was found to coord i ­

nate both by N i and Ge neighbors. A t the composi t ion 
Ni33Ge45, Ge is coordinated by 4.0 N i at 2.31 A and 3.8 
Ge at 2.43 A . The difference i n Ge coord ina t ion between 
the sputtered and l iquid-quenched materials m a y arise 
f r o m differences between the t w o preparat ion methods as 
wel l as material composi t ion . The sput ter ing route, w h i c h 
bypasses the Uquid state, tends to y ie ld a more random­
ized d i s t r ibu t ion o f l ike and un l ike pairs i n a binary amor­
phous sol id , whereas i n splat quenching, l i q u i d l i k e conf ig­
urations are retained i n the glassy sol id as the system falls 
out o f its internal equ i l i b r ium at the glass t rans i t ion . 

V . C O N C L U D I N G R E M A R K S 

The existence o f Ni2B i n bo th the glassy and crystal l ine 
phases o f known structure provided the experimental ad­
vantage o f ut iUzing the E X A F S technique to gain ins ight 
in to the metal environmental i n metal l ic glasses. I n crys­
tall ine Ni2B, the N i - N i separations are d is t r ibuted i n to 
four dis t inct distances or subshells, the E X A F S signal 
f rom wh ich has been proper ly f i t t ed using a mu l t i she l l 
s imula t ion w i t h the single-scattering fo rma l i sm. Th i s 
s imula t ion procedure produces a set o f self-consistent N i -
N i phase shift parameters w h i c h were transferred to s imu­
late the coordinat ion number and bond distances i n t l 
glassy state f rom the experimental E X A F S signal. Sys­
tematic fitting indeed shows that a subshell s tructure o f 
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N i - N i correlat ion, l ike that i n the parent crystal , exists i n 
the glass. However, the N i neighbors are found to redis­
t r ibu te i n to three subshells w i t h a measurably shorter N i -
N i distance i n the glass. Th i s new f i n d i n g has not been 
ealized i n previous E X A F S studies o f metal -metal lo id 

glass at the 80:20 composi t ion , since there exists no ap­
propria te crystal system to model the glass structure at the 
same composi t ion . 

D i f f r a c t i o n techniques have also been used extensively 
to study the pa i r dis t r ibut ions i n the metalhc glasses, par­
t i cu la r ly to distances beyond the f i rs t coordinat ion sphere, 
and f o r m a basis for testing various s t ructura l models. 
Perhaps the most detailed d i f f rac t ion study o f metal-
meta l lo id glass is tha t by Lampar te r et al." i n glassy 
N i g , B | 9 using an isotopic subst i tut ion for bo th N i and B 
i n the i r neutron scattering experiments. Nonetheless, the 
par t ia l s tructure factor for the N i - N i pair yielded an 
overal l coordinat ion number w i t h an average distance o f 
separation. N o subshell i n fo rma t ion was evident f r o m the 
d i f f r ac t ion study. 

Ge was used as an E X A F S probe for meta l lo id environ­
ment i n NigfiBijGeig glass since the B K edge is too low i n 
energy to be measured at SSRL. Such subst i tu t ion yielded 
in fo rmat ive results and can be shown to be generally va l id 
when compared w i t h " B N M R measurements o f N i - B 
glasses." However , caut ion must be exercised when at­
tempt ing t o d raw detailed conclusions about the boron en­
v i ronment f r o m that o f Ge since their a tomic radi i as wel l 
as electronic configurat ions are different . F ina l ly , 
X A N E S spectra o f constituent elements provide qual i ta­
t ive i n fo rma t ion on the chemical interactions between the 
netal and meta l lo id i n the glass and complement s tructur­

al data f r o m the E X A F S region. 
I n summary, h igh l igh t s o f our E X A F S findings in this 

novel h igh meta l lo id content Ni6^B33 glass as modeled by 
a mul t i she l l s imula t ion w i t h the corresponding Ni2B crys­

ta l are the fo l lowing . 
(1) A r o u n d the central N i atoms there exist both B and 

N i "nearest" neighbors. 
(2) The structure o f the B coordinat ion shell remains 

s imi la r to that in the crystal i n terms o f the number o f B 
neighbors about a central N i a tom and the N i - B separa­
t ion . 

(3) A s i n the crystal , the N i neighbors exist i n sub-
shells, but substantially rearranged and measurably closer 
to the central N i a tom. Nei ther the N i - N i d i s t r ibu t ion in 
the glass is a broadened version o f that in the parent N i ^ B 
crystal nor the N i - N i separations can be described by an 
average value. 

(4) I n the Ge substituted Nig^BisGeig glass, the Ge is 
coordinated only by N i atoms (coordinat ion number o f 
x9).' There is no Ge-Ge contact pair . 

(5) The G e - N i distance is 2.37 A , w h i c h is substantially 
shorter than the sum o f thei r Go ldschmid t rad i i o f 2.62 A , 
indicat ive o f strong meta l -meta l lo id interactions i n the 
glass. 
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